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DEVELOPMENT OF A HYDROGEN-BASED ANNEALING PROCESS FOR 

THE DESULFURIZATION OF SINGLE CRYSTALLINE, NICKEL-BASED 
SUPERALLOYS 

MA. SMITH, T.H. MICKLE, W.E. FRAZIER, and J.WALDMAN 

INTRODUCTION 

In order for a metal to withstand degradation by oxidation at elevated temperatures, a 
slow growing, compact, oxide film must form on the metal surface. Additionally, the film 
must not subsequently separate from the surface, thereby, exposing bare metal to the 
environment. Nickel-based superalloys commonly contain aluminum or chromium at 
concentrations sufficient to form scales of alumina, chromia, nickel chromium spinels 
and/or nickel aluminum spinels. In general, alloys which form aluminum containing oxides 
exhibit superior oxidation resistance in comparison to their chromium oxide forming 
counterparts[ 1,2]. This is due primarily to the lower diffusion of oxygen in the aluminum 
containing scales. Additional improvements in environmental resistance (as well as higher 
operating temperatures) have been achieved through the replacement of polycrystalline 
alloys with single crystal components, and the use of protective metal coatings such as 
NiCrAlY as well as with thermal barrier coatings (TBC) composed of ceramics such as 
yttria stabilized zirconia. 

A common and serious short coming of these alloys is that loss of the protective oxide 
(or of the applied TBC) occurs on thermal cycling. As a result, the environmental 
resistance of the alloy is compromised resulting in accelerated oxidation of the alloy. In 
naval aviation environments, the service life of an alloy prone to spalling is more severely 
impaired by the phenomena of hot corrosion. At temperatures from 650-900 °C, contact 
with Na2S04 leads to severe alloy degradation. (Na2S04 is formed by a reaction between 
NaCl, present as sea salt deposits and sulfur dioxide from engine exhaust). In laboratory 
tests, massive loss of superalloy cross section results after only a few hours exposure to 
molten Na2S04 at 900°C [3]. Non-spalling components are more resistant to the 
phenomena since they exhibit an incubation period in the presence of molten Na2S04 of 
several tens of hours prior to the onset of active corrosion [3]. An even longer incubation 
period (>400 hrs) may be achieved using alloys which form a compact chromia layer 
(i.e.Waspalloy) provided that the oxide does not spall [3]. Alumina layers are generally 
less resistant [3]. 

It is now well established that trace levels of sulfur (1-10 ppm) present as impurities in 
the bulk of nickel-based superalloys lead to the spallation phenomena described above [4- 
9]. It is believed that the sulfur impurity segregates as a monolayer at the metal/scale 
interface. This causes dramatically reduced adhesion and subsequent oxide spallation [10]. 

Traditionally, the problem has been controlled through the addition of elements such as 
yttrium and hafnium at levels of about 0.1 wt.%. These so-called "reactive" elements form 
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refractory sulfides, thereby reducing the mobility of sulfur to very low levels. This 
effectively prevents the segregation of sulfur to the interface and eliminates oxide 
spallation. Most of the commercially available, nickel-based superalloys currently used for 
turbine engine blades contain such "reactive" additions. 

There are several important problems with this approach. Generally, these additions are 
extremely expensive. Moreover, they make alloy processing more difficult and reduce 
casting yields[3,l 1]. In addition, there is some evidence that the sulfur-gettering effect is 
incomplete since oxide loss is sometimes observed (e.g. after -500 hrs.) [12-14]. 

More recently, it has been shown that in some superalloys of very low bulk sulfur 
content (Cs«lppm) the oxidation life is dramatically extended (t >1200 hrs. at 1180CC) 
[3,13], Further protection may be realized through the use of low sulfur NiCrAl coatings 
[3], The service life of turbine blades fabricated from higli purity alloys is limited by its 
fatigue or creep rupture life rather than by its environmental resistance. However, the 
commercial production of very low sulfur superalloys using ultrahigh purity elements is 
not generally feasible due to the high cost of these materials. Moreover, there is a 
pronounced tendency for the alloy to be contaminated with sulfur during the blade casting 
process. 

This investigation centers on developing a commercially viable, hydrogen-based, 
annealing process for removing the sulfur from "as-cast" turbine blade components. 
Hydrogen reacts with sulfur at the superalloy surface removing it as hydrogen sulfide [11]. 
The process parameters studied included temperature, gas composition, furnace vacuum 
level, time, and gas flow rate. A test matrix of these variables was set up and used to 
optimize the "desulfurization" process . Some samples were chemically analyzed both 
before and after the treatments to determine their sulfur concentrations. Others were 
cyclically oxidized to determine whether the sulfur reductions were sufficient to produce 
adherent behavior. 

EXPERIMENTAL PROCEDURE 

A process for removing sulfur from a commercially-supplied, nickel-based superalloy 
was designed by NAWCADWAR personnel (figure 1) [13] . Desulfurization is 
accomplished by annealing at high temperature in hydrogen. This allows removal of the 
sulfur as hydrogen sulfide gas. Due to the high reactivity of superalloys with oxygen and 
water, the hydrogen was flowed over a zirconium getter. Additionally, the annealing was 
done in a high vacuum, graphite furnace which allowed continuous evacuation of the 
flowing gases. Under proper operating conditions, the oxygen activity was low enough to 
prevent oxidation of the superalloy. 

A molybdenum fixture was designed for use inside the furnace. This was intended to 
minimize hydrocarbon formation by reaction of hydrogen with the graphite heating 
elements and to prevent carburization of the superalloy slabs. The slabs were ground to 
specific thicknesses (see table 1), given a 1 mm diamond polish and degreased with 
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acetone prior to annealing. The samples were suspended from sapphire hooks inside the 
chamber to prevent their reaction with the molybdenum components. 

A Plackett-Burman experimental test matrix was used to establish the importance of the 
various processing parameters[15]. The variables tested included time, temperature, gas 
mixture, gas flow rate, vacuum level, and slab thickness. The values used are shown in 
table 1. This data was used to determine the optimum operating conditions for the 
process. 

The alloys studied were Rene N5, Rene N6, and PWA 1484. All are proprietary, single 
crystal alloys produced by GE (Rene N5 & N6) or Pratt & Whitney (PWA 1484). None of 
the alloys studied contained yttrium gettering additions since this would impede sulfur 
removal. Initial and final sulfur levels were determined using Glow Discharge Mass 
Spectroscopy (GDMS). This technique is capable of accurately determining sulfur 
concentrations below the ppm level. (GDMS assessments were done by Charles Evans and 
Associates, Redwood City, CA and Shiva Technologies, Cicero, NY.) The sulfur 
concentration values were used to determine the apparent diffusion coefficient of sulfur in 
the alloys. 

The environmental resistance of selected samples was evaluated using a cyclic oxidation 
furnace (figure 2). Oxidation samples were machined to dimensions of approximately 2cm 
X .25cm x .07 cm then given a 1 u.m diamond polish. Next, they were ultrasonically 
degreased using acetone and rinsed with dry methanol. Cycles consisted of holding the 
samples in air at 1200 °C for 55 minutes followed by holding the sample for 5 minutes at 
room temperature. Samples were periodically removed and weighed. They were then 
returned to the furnace. Testing typically lasted for 200 cycles. 

RESULTS 

The sulfur contents of each alloy, following desulfurization, along with the process 
parameters used are presented in tables 2a, 2b, & 2c. Evaluation of the data shows that 
effective desulfurization is favored by the use of higher vacuum, higher temperatures, 
thinner samples, and longer anneal times. Less important were the gas flow rates and the 
particular high purity gas mixture (10% H2-90% Ar Versus 100% H2) employed. The use 
of standard purity gases leads to oxidation and prevents desulfurization. 

Cyclic oxidation testing of Rene N6 at 1200°C confirms the correlation between low S 
content and improved oxidation resistance. For example, after 200 hrs, specimens with 4.3 
ppm S experienced an average sample weight loss of 8.5 % vs 0.4% for a sample with 
.081 ppm S. Some desulfurized samples gave completely adherent scales in tests lasting up 
to 200-Ihr cycles. (The small weight loss experienced by the .081 ppm S material was not 
the result of spalling to bare metal but was due to fracture within the oxide layer.) 

In most samples, spalling ranging from 1-100% of the surface area was eventually 
observed. The measured weight losses of the alloys correlated fairly well with the residual 
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sulfUr content of the alloys. These data are summarized in figures 3a-b. The results 
generally indicate that a mostly adherent scale can be expected only when sulfur levels of 
about 0.25 ppm S are achieved. A transition to complete adherence occurs at around 0.1 
ppm S. 

DISCUSSION 

Process Parameters: 

An analysis of the desulfurization process variables shows that better desulfurization is 
achieved at a vacuum of 10 torr versus 125 torr. This is believed to be due to the tendency 
of the alloy to oxidize in the poorer vacuum. Any oxide thus formed is an effective barrier 
to desulfurization. The highest vacuum (10-4 torr) yielded no further improvement in 
desulfurization but is more expensive and difficult to maintain. The use of a Zr getter foil 
and the use of high purity gas mixtures (99.999% or better) were also essential in 
producing an oxide free surface. The 100% H2 gas had no discernible advantage over the 
10% H2-90% Ar. However, the latter mixture is perhaps more attractive owing to its 
lower cost and reduced explosion hazard. For cost reasons, the lower gas rate (10 scfh) is 
preferred over the higher flow rate (40 scfh). Thinner samples, higher annealing 
temperatures and longer annealing times all produced greater reductions in sulfur levels. 

While the higher annealing temperature (1250°C) promotes improved desulfurization, it 
also increases the tendency of the second phase precipitates in the alloy (cuboidal y -Ni3Al 
) to coarsen. This may negatively impact the creep and fatigue resistance of the alloy. The 
use of higher temperatures also leads to an increased tendency for aluminum, nickel and 
chromium depletion from the surface. This results in an enrichment of refractory metals 
(Mo, Ta, and Re) at the surface. This layer must be removed to ensure a protective oxide 
is formed and to prevent damage to the mechanical properties of the alloy. 

Kinetics of the Process: 

Consideration of the desulfurization data reveals that the process is controlled by the 
diffusion of sulfur through the alloy. Assuming an initially homogeneous distribution of 
sulfur in the alloy, the reduction in average sulfur concentration is readily calculated using 
the equation [16]: 

Cavg/Cinitial ~ (8/7t2)*exp (-7t2 Dst/x2) 

where: Cavg = the average concentration of sulfur after desulfurization 

Qnitial = tne starting concentration of sulfur 

Ds= the diffusion coefficient of sulfur in the sample 



N AWCADWAR-95001-4.3 

t = annealing time 

x = the thickness of the sample 

The diffusion of sulfur is considerably slower in these alloys than it is in pure nickel. 
The best estimates based on the desulfurization runs suggest that the values are from 1/3 
to 1/2 those of nickel. An obvious consequence of this is that desulfurization of these 
alloys takes 2-3 times as long it would take in pure nickel. 

The diffusion coefficient of nickel is given as [8]: 

Ds= 1.4* exp (-218,600/RT) 

where: Ds = the diffusion coefficient of sulfur in nickel (cm2/sec) 

R= 8.314 joules/mol °K 

T= temperature °K 

Superalloy turbine blades commonly have wall thicknesses of 1.8-2.0 mm (70-80 mils). 
The percent reduction of sulfur in a 1.9 mm (75 mils) thick slabs of a superalloy and of 
nickel as a function of time and temperature is shown in table 3. It is clear from these data 
that a much greater reduction of sulfur occurs in pure nickel than in the superalloy for a 
given annealing cycle. 

Cyclic Oxidation Tests: 

As discussed in the introduction, the oxidation resistance of these alloys is expected to 
be strongly dependent on the bulk sulfur levels. The results of this study were in accord 
with earlier work which showed that cyclic oxidation resistance is negatively impacted by 
the presence of trace impurities, notably sulfur. As discussed in the results section, a 
mostly adherent scale can be expected only when sulfur levels of about 0.25 ppm S are 
achieved. Given that the highest S levels recorded in the "as-cast" alloys were about 4.3 
ppm S, this requires a factor of 16 reduction in the bulk sulfur levels. In a .075" thick slab 
containing 4.3 ppm S, it is estimated that an annealing time of 175 hours would be 
required (given Ds ~ 1.5*10"8 cm2/sec @ 1250°C.) In 50 hours (the longest time used in 
this study), the level would be reduced to approximately 1.7 ppm S (a factor of 2.5) and 
would not give reliable improvements in oxidation resistance. 



N AWCADWAR-95001 -4.3 
CONCLUSIONS 

1) Hydrogen desulfurization of nickel-based superalloys is strongly dependent on time, 
temperature, sample thickness, and gas purity. This last variable determines whether 
or not an oxide is formed on the surface. 

2) Hydrogen desulfurization is a diffusion controlled process and is described by the 
equation for thick slab diffusion. 

3) The diffusion coefficients of sulfur in the nickel-based superalloys studied are 1/3-1/2 
those of sulfur in pure nickel. As a result, annealing times 2-3 times those required for 
effective nickel desulfurization are required for the superalloys studied. 

4) Sulfur levels of less than 0.25 ppm are required to produce reliable oxide adherence in 
Rene N6. Similar levels are probably needed in the other alloy systems studied. At 
current alloy purity levels, it would require from 150-300 hrs to achieve these levels in 
a 75 mil slab. 
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a) 
RENE N6 SINGLE CRYSTAL 

Heat# Sample I.D. Thick 
(mils) 

Temp (°C) 

1A G1A 75 - 

1A G1A 75 1200 

325 325A 75 

325 325B 75 

325 325C 75 

325 75 

325 325-1 30 1250 

325 325-2 30 1200 

325 325-3 30 1250 

325 325-4 30 1200 

325 325-5 30 1250 

325 325-6 30 1200 

325 325-7 30 1200 

325 325-8 30 1200 

325 325-9 30 1250 

325 325-10 30 1200 

325 325-11 30 1250 

325 325-12 30 1250 

1 Bl 125 

1 Dl 20 1250 

3 A3 125 

3 D3 125 

4 C4 125 

722 D722 75 

Time 
(hrs.) 

50 

30 

10 

10 

10 

30 

10 

30 

30 

30 

30' 

10 

10 

50 

Atm 
%H7 

Gas flow 
rate (SCFH) 

- - 

10% 10 

10% 10 

10% 10 

100% 40 

10% 40 

100% 10 

100% 10 

100% 10 

10% 40 

10% 40 

10% 40 

10% 10 

100% 40 

10% 40 

Vacuum 
(torr) 

10E-4 torr 

10 torr 

10 torr 

10 torr 

10 torr 

10 torr 

125 torr 

125 torr 

125 torr 

125 torr 

10 torr 

125 torr 

125 torr 

10 

S (ppm) 

1.2 

722 E722 20 1250 50 105 40 10 

2.7 

1.1 

2.1 

0.081 

0.44 

0.26 

0.52 

0.12 

0.66 

0.43 

0.26 

0.24 

0.15 

0.96 

0.27 

1.6 

.036 

2.5 

2.5 

4.3 

.0.91- 
0.95 

.016 

11 
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RENE N5 SINGLE CRYSTAL 

1822 

1822 

1822 

1055 

1055 

1055 

Heat #      Sample I.D. 

K1822 

K1822 

LI 822 

A1055 

A1055-1 

A1055-2 

Thick 
(mils) 

75 

75 

63 

125 

30 

60 

Temp (°C) 

1250 

1200 

1200 

1200 

Time 
(hrs.) 

Atm 
%H, 

- 

50 10% 

50 10% 

50 10% 

50 10% 

Gas flow 
rate (SCFH) 

40 

10 

10 

10 

Vacuum 
(torr) 

10 

10E-4 torr 

10E-4 torr 

10E-4 torr 

S (ppm) 

2.1 

0.86 

1.6 

.19 

.63 

c) 

6594 

6594 

6594 

6594 

7888A 

7888A 

7888A 

Heat#     Sample I.D. 

PWA 
PW1 
PW2 
PW3 

PWB 
PW8 
PW8A 

PWA 1484 SINGLE CRYSTAL 

Thick 
(mils) 

15 

30 

80 

94 

94 

65 

Temp (°C) ! 

1200 

1200 

1200 

1200 

1250 

Time 
(hrs.) 

Atm 
%H2 

- 

50 10% 

50 10% 

50 10% 

- - 

50 10% 

50 10% 

Gas flow 
rate (SCFH) 

10 

10 

10 

10 

40 

S(ppm) 

7 

0.51 

1.1 

1.9 

9.5 

1.8-2.6 

Table2: Selected results from desulfurization anneals of a) Rene N6 b) Rene N5 
c) PWA 1484 

tubular sample 

tubular sample 

tubular sample 
results 

variable 
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